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Bayesian Deep Learning Tutorial

• Session 1: Bayesian methods for machine learning [Pengyu (Ben) Yuan]
• Introduction & basic Bayesian rule
• Non-Bayesian machine learning method
• Bayesian machine learning method (Variational Inference)
• Non-parametric machine learning method (Gaussian Process)

• Session 2: Bayesian deep learning [Dan Nguyen]
• Uncertainty in model predictions
• Bayesian deep learning with dropout
• Some practical application examples

• Session 3: Bayesian deep learning demos [Pengyu (Ben) Yuan]
• DropConnect Is Effective in Modeling Uncertainty of Bayesian Deep Networks
• Skin lesion classification demos
• Organ segmentation demos

H U L A Lab



H U L A Lab

Bayesian methods for 
machine learning

HoUston Learning Algorithms (HULA) Lab
Presented by Pengyu (Ben) Yuan
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About our lab
HoUston Learning Algorithms (HULA) Lab

Funded by
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Machine learning is
impacting our life



H U L A Lab 5

Is this a cat or dog? Are you sure this is a hot dog?
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ModelInput x Output y
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How to safely deal with uncertainty?

We cannot afford the cost from wrong predictions.
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• Wisdom is knowing what you don’t know

~ Socrates
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• Wisdom is knowing what you don’t know

~ Socrates

Thomas Bayes ~

Bayesian methods
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• Bayesian rule/Inference
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Basic Bayesian rules

w – parameters 
y – observations

Likelihood Prior

Evidence

Posterior
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• Bayesian rule/Inference
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Basic Bayesian rules

w – parameters 
y – observations (labels)
X – Inputs

Likelihood Prior

Evidence

Posterior
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Basic machine learning problem:
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Basic Bayesian rules

where X, y is training data
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Basic machine learning problem:

Assume model:

Prior knowledge about w:

where w is model parameter
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Basic Bayesian rules
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Basic machine learning problem:

Use Bayesian rule to get posterior
distribution of w
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Basic Bayesian rules
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Basic machine learning problem:
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Basic Bayesian rules

Use posterior distribution of w for
prediction

where X*, y* is test data
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Linear regression

True model:

Observation:

where

N = 20 samples
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Linear regression

Linear model

where

and

Observation
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Linear regression

Basis functions
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Linear regression

Basis functions
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Linear regression

Maximum likelihood estimator (MLE)

For MLE, maximize the likelihood :

Because

Maximize likelihood is equivalent to least squares (if Gaussian)
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Linear regression

Maximum likelihood estimator (MLE)
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Linear regression

Maximum likelihood estimator (MLE) -- suffer from overfitting
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Linear regression

Maximum likelihood estimator (MLE) -- doesn’t give prediction uncertainty

When , we have
28
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Bayesian linear regression

Bayesian inference estimator (BIE)

Instead of maximize the likelihood:

For BIE, we maximize the posterior :

30

Bayesian equation

Gaussian prior:
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Bayesian linear regression

Bayesian inference estimator (BIE)

Calculate log posterior:

Maximize posterior is equivalent to regularized least squares (if Gaussian)

More importantly, the prediction can have a distribution:

Compared with MLE:

31
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Bayesian linear regression

Bayesian inference estimator (BIE)

When , we have , ,
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Bayesian linear regression

Bayesian inference estimator (BIE)

When , we have , ,
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Bayesian linear regression

Reduce the number of samples (N = 8)
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Bayesian linear regression

Reduce the number of samples (N = 3)
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Bayesian linear regression

Uncertainty analysis
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1) x = 0.6 is in the training distribution

2) x = 1.4 is out of training distribution

(1) x = 0.6

(2) x = 1.4
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On-line learning
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Bayesian linear regression

w – parameters 
y – observations

Likelihood Prior

Evidence

New Prior

Posterior
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Bayesian linear regression

Evolving of posterior of the weights -- only show w0, w1 here

N = 3 N = 8 N = 20
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Classical Machine Learning

1. Starting point: Set of possible
models ( )

2. Optimization: Maximize the
likelihood ( )

3. Result: (usually) is a
deterministic function

4. Prediction: (usually) by
deterministic function call
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Classical ML vs. Bayesian ML

Bayesian Machine Learning

1. Starting point: Distribution of
possible models ( )

2. Optimization: Maximize the
posterior ( )

3. Result: (usually) is an updated
model distribution

4. Prediction: (usually) averaging
model distribution
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Classical Machine Learning

5. Variance: (may) suffer from
overfitting

6. Learning: Offline learning only
(Include all data for learning)

40

Classical ML vs. Bayesian ML

Bayesian Machine Learning

5. Variance: (usually) smaller,
because of regularization term
in optimization

6. Learning: can be used for online
learning (only use new data for
learning)
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Summary
Pros:

1. Give us a distribution of prediction

2. Prevent overfitting problem

3. Can use on-line learning to update model gradually

Cons:

1. Computational intensive (especially when we can not avoid calculating the
evidence, and sometimes the posterior is intractable)

41

Bayesian ML
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Why the posterior is difficult to compute?

• It is intractable to compute because it is impossible to consider all configurations

of the neural network.

Why we use variational inference?

42

Fixed by model Our own choice

Fixed by data
Neural networks
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Variational inference
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When the posterior is difficult to compute, why we just use an approximation

to speed up the process?                              ,
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Kullback-Leibler (KL) divergence
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Kullback-Leibler (KL) divergence
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Numerical example:

If                     ,

For Bernoulli distribution:

If                                     , when                                   ;    when 

Kullback-Leibler (KL) divergence
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Evidence Lower Bound (ELBO)
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Log evidence

where

Evidence is fixed by data, thus
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Evidence Lower Bound (ELBO)
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Maximize ELBO

q(w)     – variational distribution 
p(w|y) – true posterior distribution
p(y|w) – likelihood
p(w).    – prior distribution
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Evidence Lower Bound (ELBO)

50

Maximize ELBO

Samples from         to 
perform original tasks

Regularization term
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Evidence Lower Bound (ELBO)

Basic ideas: maximize ELBO to use to approximate , 

• During training:

Train samples from to perform original tasks and penalize for

differing from prior distribution

• During prediction:

Sample from to do the prediction (use it as true posterior distribution)

51
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Mean field variational inference

As w usually is high dimensional, mean field variational inference is a further 

simplification of variational distributions          , by considering each dimension 

independently:
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Mean field variational inference
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Example:
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Problem of parametric method
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The problem of linear regression:

Which basis functions to choose? How many parameters should we have?

If the assumption is wrong, more training data is not going to help at the end.

Parameters Basis function

Model complexity Function form
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Parametric Method:

• Directly simplify the mapping function to a known form.

• Number of parameters is fixed.

Non-parametric Method:
• Do not make strong assumptions about the form of the mapping function,

but about the correlations between different input.

• Model complexity grows with the size of training data.

56

Parametric vs. Non-parametric
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Gaussian process
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What is Gaussian process?

It can be seen as an infinite-dimensional generalization of multivariate normal 

distributions (any finite subset of which are Gaussian distributed).

Gaussian distribution Gaussian Process
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Gaussian process
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Control and Optimization of Soft Exosuit to Improve the efficiency of Human Walking - Scientific Figure on ResearchGate. Available from: 
https://www.researchgate.net/figure/Illustration-of-1-D-Gaussian-process-A-Gaussian-process-is-a-statistical-model-that_fig44_325386879

Function view
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Linear regression vs. GP regression
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Function view
,

GP regressionBayesian linear regression
(Non-parametric)(Parametric)



H U L A Lab

GP regression
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Prior distribution on function

Prior:

Gaussian Kernel:
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GP regression
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GP prediction

Use observed data to predict:
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Different hyper-parameters
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𝐾 𝑥!, 𝑥" = 𝜎#"exp(−
1
2𝑙"

(𝑥! − 𝑥")")horizontal-scale 

small 𝑙 large 𝑙
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Different hyper-parameters
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𝐾 𝑥!, 𝑥" = 𝜎#"exp(−
1
2𝑙"

(𝑥! − 𝑥")")vertical-scale 

small 𝜎# large 𝜎#
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Different hyper-parameters
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𝑝 y|f, X = 𝑁(y|𝟎, K(x, x’) + 𝜎$"I)noise level 

small 𝜎$ large 𝜎$
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GP regression

3 samples

66
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GP regression

8 samples
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GP regression

20 samples

68
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Comparison
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The relationship between

• Linear regression

• Bayesian linear regression

• GP regression 

History of Bayesian Neural Networks (Keynote talk), NIPS 16
Available from: https://www.youtube.com/watch?v=FD8l2vPU5FY
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Comparison
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GP regressionLinear regression
Linear Bayesian

regression
Bayesian Non-parametric
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Take away
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• Bayesian method can give us a prediction distribution which can give us a

sense of uncertainty of the prediction

• Instead of explicitly assuming the form of mapping function, non-parametric

method predict based on the correlation of each samples

• For Bayesian method, when the posterior is intractable, we can use

variational inference to approximate it with a familiar distribution model
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• Bishop, Christopher M. Pattern recognition and machine learning. springer, 
2006.(http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-
%20Pattern%20Recognition%20And%20Machine%20Learning%20-
%20Springer%20%202006.pdf)
• http://krasserm.github.io/2019/02/23/bayesian-linear-regression/
• https://www.ntsb.gov/investigations/AccidentReports/Reports/HAR1702.pdf
• https://www.coursera.org/learn/bayesian-methods-in-machine-

learning/lecture/8e5un/why-approximate-inference
• http://krasserm.github.io/2018/03/19/gaussian-processes/
• https://arxiv.org/pdf/1601.00670.pdf (Variational Inference: A Review for Statisticians)
• http://gpss.cc/gpss13/assets/Sheffield-GPSS2013-Turner.pdf (GP)
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